Silver Orthoselenoarsenite

By Kohzo Sakal,* Toshihiro Koide \dagger and Takeo Matsumoto
Department of Earth Sciences, Faculty of Science, Kanazawa University, Marunouchi 1-1, Kanazawa 920, Japan

(Received 9 February 1978; accepted 4 July 1978)

Abstract

Ag}_{3} \mathrm{AsSe}_{3}\), rhombohedral, $R 3 c, a_{\text {hex }}=$ 11.298 (3), $c_{\text {hex }}=8.757$ (3) $\AA, c / a=0.7750, \underset{Z}{\text { hex }}=6$, $D_{x}=6.54 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure is isonnorphous with $\mathrm{Ag}_{3} \mathrm{AsS}_{3}$ (proustite) and $\mathrm{Ag}_{3} \mathrm{SbS}_{3}$ (pyrargyrite). Bond lengths and angles are as follows; As-Se: 2.411, $\mathrm{Se}-\mathrm{Ag}: 2.527, \mathrm{Se}-\mathrm{Ag}: 2.548 \AA, \mathrm{Se}-\mathrm{As}-\mathrm{Se}: 98.1$, $\mathrm{As}-\mathrm{Se}-\mathrm{Ag}: 107 \cdot 5, \mathrm{As}-\mathrm{Se}-\mathrm{Ag}: 97.4, \mathrm{Se}-\mathrm{Ag}-\mathrm{Se}:$ $158.8, \mathrm{Ag}-\mathrm{Se}-\mathrm{Ag}: 79.9^{\circ}$.

Introduction. The synthesis of $\mathrm{Ag}_{3} \mathrm{AsSe}_{3}$ was first reported by Wernick \& Benson (1957), but no crystal data of this material were given. In our laboratory, one of us (TK) succeeded in synthesizing this material. The mixture of pure Ag , As and Se was sealed in an evacuated silica tube, melted at $1000^{\circ} \mathrm{C}$ for four days and then quenched. The glass phase of $\mathrm{Ag}_{3} \mathrm{AsSe}_{3}$ was formed in this process. The powdered glass of $\mathrm{Ag}_{3} \mathrm{AsSe}_{3}$ was sealed again in an evacuated silica tube, annealed at $345^{\circ} \mathrm{C}$ for two weeks and then quenched. One of us (Koide, 1972) showed that this material was stable from $385^{\circ} \mathrm{C}$ (m.p.) down to $200^{\circ} \mathrm{C}$.

The lattice constants obtained by applying a leastsquares method to the four-circle diffractometer data were closely consistent with the results based on powder diffractometer data calibrated with superimposed silicon powder.

The crystal used for intensity measurements was hexagonal prismatic in shape, 0.15 mm in height and 0.12 mm in width. Systematic absences are $h k l:-\mathrm{h}+\mathrm{k}$ $+l=3 n+1$ and $h 0 l: l=2 n \pm 1$, giving possible space groups $R 3 c$ and $R \overline{3} c$.

[^0]Intensities were collected on a Rigaku automated four-circle diffractometer up to $2 \theta=55^{\circ}$ by the $\omega-2 \theta$ scan technique with Mo $K a$ radiation monochromated with graphite. The scan width was determined according to the formula $1 \cdot 1+0.5 \tan \theta .266$ independent reflections were measured, of which 33 were unobserved. Lorentz and polarization corrections were performed. For the absorption correction the crystal was assumed to be of a cylindrical shape. The linear absorption coefficient, μ, is $321.8 \mathrm{~cm}^{-1}$ for Mo Ka radiation.

Lattice constants, the space group and the powder diffraction pattern indicated that the structure was isomorphous with proustite $\left(\mathrm{Ag}_{3} \mathrm{AsS}_{3}, a_{\text {hex }}=10.82\right.$, $c_{\text {hex }}=8.69 \AA, R 3 c$, Engel \& Nowacki, 1966) and pyrargyrite $\left(\mathrm{Ag}_{3} \mathrm{SbS}_{3}, a_{\text {hex }}=11.04, c_{\text {hex }}=8.72 \AA\right.$, $R 3 c$, Engel \& Nowacki, 1966).

A full-matrix least-squares refinement with anisotropic temperature factors was carried out with the ORFLS program written by Busing, Martin \& Levy (1962). The space group $R 3 c$ was chosen for this refinement because the crystal was isomorphous with proustite.

Neutral-atom form factors were taken from International Tables for X-ray Crystallography (1968). The atomic coordinates of proustite were employed for the initial parameters. The conventional R value was reduced to 0.069 (excluding unobserved reflections) and 0.096 for all the reflections. The final fractional coordinates and anisotropic temperature factors are given in Table 1. \ddagger
\ddagger A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33743 (4 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

Table 1. Final atomic parameters $\left(\times 10^{4}\right)$ and estimated standard deviations

	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Ag	2498 (9)	3066 (8)	2281 (14)	302 (17)	186 (12)	277 (15)	132 (12)	77 (14)	164 (12)
As	0	0	0	40 (6)	40 (6)	30 (8)	20 (3)	0	0
Se	2144 (4)	946 (4)	3653 (9)	38 (4)	58 (5)	98 (6)	19 (4)	15 (5)	4 (6)

Discussion. The present crystal is isomorphous with proustite and pyrargyrite. Bond lengths and angles are given in Table 2 and Table 3 respectively with those of proustite given by Engel \& Nowacki (1966).

Fig. 1 shows a projection of the structure parallel to the c axis. Each As atom is surrounded by three Se atoms, making an AsSe_{3} pyramid. Ag and Se atoms make $-\mathrm{Se}-\mathrm{Ag}-\mathrm{Se}-\mathrm{Ag}-$ infinite spiral chains parallel to the c axis. There is little difference in the $\mathrm{Ag}-\mathrm{Ag}$ distance between $\mathrm{Ag}_{3} \mathrm{AsSe}_{3}$ and proustite (3.26 and $3.25 \AA$), while the differences in the $\mathrm{Ag}-X-\mathrm{Ag}$ and $X-\mathrm{Ag}-X$ angles are quite large (79.9:83.2 and $158 \cdot 8: 162 \cdot 7^{\circ}$) in comparison with the differences in the other bond angles. These data are illustrated in Fig. 2, which is somewhat exaggerated. The $\mathrm{Ag}-\mathrm{Ag}$ distance appears to become short in $\mathrm{Ag}_{3} \mathrm{AsSe}_{3}$ in this projection; however, this distance is actually constant and the apparent shortening is due to the c axis being somewhat extended in $\mathrm{Ag}_{3} \mathrm{AsSe}_{3}$. The $X-\mathrm{Ag}-X$ and $\mathrm{Ag}-X-\mathrm{Ag}$ angles become smaller by substitution of Se for S in proustite.

Fig. 1. The structure viewed down the c axis.

(a)

(b)

Fig. 2. The schematic description near the 3_{2} screw axis of (a) $\mathrm{Ag}_{3} \mathrm{AsSe}_{3}$ (present study) and (b) $\mathrm{Ag}_{3} \mathrm{AsS}_{3}$ (Engel \& Nowacki, 1966).

The axial lengths of the thermal vibration ellipsoids and the direction cosines of the axes referred to orthogonal axes ($1\left\|a_{\text {hex }}^{*}, 2\right\| b_{\text {hex }}, 3 \| c_{\text {hex }}$) are given in Table 4. The anomalous nature of the thermal vibration is similar to that of proustite, in which the anisotropy of the Ag atom is distinctive. The thermal vibration of the Ag atom is rather small along the direction of the

Table 4. Axial lengths of the thermal vibration ellipsoids and the direction cosines of the axes referred to orthogonal axes $1\left\|a_{\text {hex }}^{*}, 2\right\| b_{\text {hex }}$ and $3 \| c_{\text {hex }}$ in $\mathrm{Ag}_{3} \mathrm{AsSe}_{3}$
$B_{\text {iso }}$: Isotropic temperature factors calculated from anisotropic thermal parameters. Length: Thermal displacement parameters.

	$B_{\text {iso }}\left(\AA^{2}\right)$	Axes	$B\left(\AA^{2}\right)$	Length (\AA)	$\cos \alpha_{1}$	$\cos \alpha_{2}$	$\cos \mathrm{C}_{3}$
Ag	$8 \cdot 74$	1	11.22	0.377	0.911	-0.353	-0.213
		2	$2 \cdot 22$	0.168	$0 \cdot 146$	0.759	-0.634
		3	12.77	0.402	0.386	0.547	0.743
As	$1 \cdot 35$	1	1.57	$0 \cdot 140$	1.0	0.0	$0 \cdot 0$
		2	1.57	$0 \cdot 140$	0.0	1.0	$0 \cdot 0$
		3	0.92	$0 \cdot 108$	0.0	$0 \cdot 0$	1.0
Se	$2 \cdot 54$	1	1.46	$0 \cdot 136$	0.994	-0.030	-0.101
		2	2.37	$0 \cdot 173$	0.038	0.996	0.080
		3	3.78	$0 \cdot 219$	0.098	-0.083	0.992

Table 2. Atomic distances (\AA)

	Bond lengths			Non-bonded distances	
	$\mathrm{As}-X$				$\mathrm{Ag}-X$
	$\mathrm{Ag}-X$	$X-X$	$\mathrm{Ag}-\mathrm{Ag}$		
$\mathrm{Ag}_{3} \mathrm{AsSe}_{3}$ (Present study)	$2.411(5)$	$2.527(12)$	$2.548(11)$	$3.641(5)$	$3.260(10)$
$\mathrm{Ag}_{3} \mathrm{AsS}_{3}$ (Engel \& Nowacki,	2.254	2.443	2.448	3.43	3.25
$1966)$					

Table 3. Bond angles $\left(^{\circ}\right)$

	$X-$ As- $-X$	As $-X-\mathrm{Ag}$	As $-X-\mathrm{Ag}$	$X-\mathrm{Ag}-X$	$\mathrm{Ag}-\mathrm{X}-\mathrm{Ag}$
$\mathrm{Ag}_{3} \mathrm{AsSe}_{3}$ (Present study)	98.1 (2)	$107 \cdot 5$ (3)	97.4 (4)	158.8 (4)	79.9 (4)
$\mathrm{Ag}_{3} \mathrm{AsS}_{3}$ (Engel \& Nowacki, 1966)	99.4	108.0	99.9	162.7	83.2

$\mathrm{Se}-\mathrm{Ag}-\mathrm{Se}$ bond, whereas it is very large along the other direction, resulting in a very oblate ellipsoid.

The authors are very grateful to Professor Y. Saito, University of Tokyo, for his kindness in making available an automated four-circle diffractometer The authors' thanks are also due to Dr K. Kihara, Kanazawa University, for his helpful suggestions. The computations were carried out at the Computation Center of Kanazawa University (FACOM 230-35), Osaka University (NEAC 2200) and the University of Tokyo (HITAC 8800/8700).

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962) ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Engel, P. \& Nowacki, W. (1966). Neues Jahrb. Mineral. Monatsh. pp. 181-184.
International Tables for X-ray Crystallography (1968). Vol. III, pp. 202-207. Birmingham: Kynoch Press.
Koide, T. (1972). The Synthesis of $\mathrm{Ag}_{3} \mathrm{AsSe}_{3}$ and $\mathrm{Ag}_{3} \mathrm{SbSe}_{3}$. Thesis, Kanazawa Univ. (in Japanese).
Wernick, J. H. \& Benson, K. E. (1957). J. Phys. Chem. Solids, 3, 157.

Acta Cryst. (1978). B34, 3328-3330

Hexaamminechromium(III) Aquapentachloromanganate(II)

By William ClegG*
Department of Inorganic Chemistry, The University, Newcastle upon Tyne NE $17 R U$, England

(Received 25 May 1978; accepted 26 June 1978)

Abstract

Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{MnCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\), monoclinic, $P 2_{1} / c, a=17.203$ (3), $b=11.417$ (2), $c=14.912$ (3) $\AA, \beta=92.64(2)^{\circ}, Z=8, D_{o}=1.82, D_{c}=1.836 \mathrm{~g}$ cm^{-3}. The compound was prepared in an attempt to produce the $\left[\mathrm{MnCl}_{5}{ }^{3-}\right.$ anion. The structure consists of

 $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}\right.$ and $\left[\mathrm{MnCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3-}$ ions.Introduction. Initial cell parameters were obtained from precession photographs (Mo Ker radiation), which also indicated the space group $P 2, / c$ ($h 0 l$ reflexions absent for odd $l, 0 k 0$ absent for odd k). The asymmetric unit contains two cations and two anions.
A yellow crystal with faces parallel to the unit-cell faces was mounted, in a Lindemann-glass tube, on a Hilger \& Watts Y290 four-circle diffractometer, with c slightly misaligned from the φ axis. Unit-cell parameters and the orientation matrix were refined by least squares from 12 reflexions ($2 \theta>40^{\circ}$, Mo Ker radiation, $\lambda=$ $0.71069 \AA, \mathrm{Zr}$ filter). Intensities were collected for all unique reflexions with $2 \theta \leq 55^{\circ}(\theta-2 \theta$ scan, 2 s count at each of 50 steps of 0.02° in θ, background counts of 25 s at each end of the scan range; calibrated attenuators were inserted into the beam for intense reflexions). Three standard reflexions monitored periodically showed no significant intensity variation. The crystal was measured with a travelling microscope for absorption corrections (Gaussian integration method;

[^1]$\mu=25.65 \mathrm{~cm}^{-1}$; transmission factors range from 0.293 to 0.454). Of 6722 measured reflexions, 608 with $I<0$

Table 1. Atomic coordinates $\left(\times 10^{5}\right)$ of the nonhydrogen atoms

$\mathrm{Cr}(1)$	$12700(2)$	$68670(3)$	$13256(3)$
$\mathrm{N}(11)$	$10809(18)$	$80124(23)$	$23729(17)$
$\mathrm{N}(12)$	$15138(15)$	$54983(21)$	$22141(17)$
$\mathrm{N}(13)$	$1153(14)$	$63542(22)$	$12808(18)$
$\mathrm{N}(14)$	$10042(14)$	$82141(19)$	$4310(16)$
$\mathrm{N}(15)$	$24379(14)$	$73134(22)$	$13646(18)$
$\mathrm{N}(16)$	$1469(15)$	$58151(20)$	$2261(16)$
$\mathrm{Cr}(2)$	$38352(2)$	$19151(3)$	$36501(3)$
$\mathrm{N}(21)$	$46507(14)$	$32359(20)$	$37638(16)$
$\mathrm{N}(22)$	$30036(14)$	$31031(19)$	$40356(17)$
$\mathrm{N}(23)$	$35792(15)$	$23811(22)$	$23274(16)$
$\mathrm{N}(24)$	$4713(14)$	$7995(1)$	$32747(17)$
$\mathrm{N}(25)$	$40535(14)$	$14181(21)$	$49765(16)$
$\mathrm{N}(26)$	$30010(15)$	$5854(20)$	$35440(18)$
$\mathrm{Mn}(1)$	$12140(2)$	$18679(4)$	$11650(3)$
$\mathrm{Cl}(11)$	$14430(5)$	$24101(7)$	$28065(5)$
$\mathrm{Cl}(12)$	$968(4)$	$4505(6)$	$14489(5)$
$\mathrm{Cl}(13)$	$2005(4)$	$35136(6)$	$9702(5)$
$\mathrm{Cl}(14)$	$22344(4)$	$33060(6)$	$6735(5)$
$\mathrm{Cl}(15)$	$22453(4)$	$2767(6)$	$13101(6)$
$\mathrm{O}(1)$	$9720(14)$	$14166(20)$	$-3028(15)$
$\mathrm{Mn}(2)$	$37461(2)$	$68568(4)$	$38622(3)$
$\mathrm{Cl}(21)$	$39722(5)$	$82823(6)$	$26500(5)$
$\mathrm{Cl}(22)$	$51698(4)$	$61712(6)$	$40280(5)$
$\mathrm{Cl}(23)$	$39804(5)$	$85037(6)$	$50301(5)$
$\mathrm{Cl}(24)$	$23151(4)$	$72119(8)$	$39545(5)$
$\mathrm{Cl}(25)$	$34801(4)$	$52709(6)$	$26679(5)$
$\mathrm{O}(2)$	$35913(13)$	$55244(19)$	$49594(15)$

[^0]: * Present address: Research Laboratory, Asahi Glass Company Ltd, Hazawa-cho, Kanagawa-ku, Yokohama 221, Japan.
 \dagger Present address: Higashi High School, Kyutaro-cho 1-1, Higashi-ku, Osaka 541 , Japan.

[^1]: * Present address: Anorganisch-Chemisches Institut der Universität, Tammannstrasse 4,3400 Göttingen, Federal Republic of Germany.

